论文标题

离散对数符号分布的浓度功能和熵边界

Concentration functions and entropy bounds for discrete log-concave distributions

论文作者

Bobkov, Sergey G., Marsiglietti, Arnaud, Melbourne, James

论文摘要

在离散对数符合概率分布类别中的浓度函数和rényi熵探索了双面边界。它们用于得出熵功率不平等的某些变体。

Two-sided bounds are explored for concentration functions and Rényi entropies in the class of discrete log-concave probability distributions. They are used to derive certain variants of the entropy power inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源