论文标题
离散对数符号分布的浓度功能和熵边界
Concentration functions and entropy bounds for discrete log-concave distributions
论文作者
论文摘要
在离散对数符合概率分布类别中的浓度函数和rényi熵探索了双面边界。它们用于得出熵功率不平等的某些变体。
Two-sided bounds are explored for concentration functions and Rényi entropies in the class of discrete log-concave probability distributions. They are used to derive certain variants of the entropy power inequalities.