论文标题

$ \ mathrm {sl} _2 $离散估值戒指的同源性

The homology of $\mathrm{SL}_2$ of discrete valuation rings

论文作者

Hutchinson, Kevin, Mirzaii, Behrooz, Mokari, Fatemeh Yeganeh

论文摘要

让$ a $是一个离散的估值戒指,带有分数$ f $和(足够大的)残留场$ k $。我们证明,有一个自然的精确序列$ h_3(\ mathrm {sl} _2(a),\ mathbb {z} [\ frac {\ frac {1} {2} {2}]) \ Mathcal {rp} _1(k)[\ frac {1} {2}] \至0 $,其中$ \ Mathcal {rp} _1(k)$是$ k $的精制剪刀一致性组。令$γ_0(\ Mathfrak {M} _a)$表示由$ \ Mathrm {sl} _2 _2(a)$组成的一致性子组,其较低的偏外条目在于最大的理想$ \ mathfrak {m} _a $。我们还证明,有一个精确的序列$ 0 \ to \ editline {\ mathcal {p}}}(k)[\ frac {1} {2} {2} {2}] \ to H_2(γ_0(\ m atrafrak {\ Mathfrak {m} _a),\ Mathbb {Z} h_2(\ mathrm {sl} _2(a),\ mathbb {z} [\ frac {\ frac {1} {2}]) $ \ mathrm {gw}(k)$和$ \ overline {\ mathcal {p}}(k)$是剪刀一致组的某些商(从dupont-sah)$ \ nathcal {p}(p}(p}(k)$ k $ k $)。

Let $A$ be a discrete valuation ring with field of fractions $F$ and (sufficiently large) residue field $k$. We prove that there is a natural exact sequence $H_3(\mathrm{SL}_2(A),\mathbb{Z}[\frac{1}{2}]) \to H_3(\mathrm{SL}_2(F),\mathbb{Z}[\frac{1}{2}])\to \mathcal{RP}_1(k)[\frac{1}{2}]\to 0$, where $\mathcal{RP}_1(k)$ is the refined scissors congruence group of $k$. Let $Γ_0(\mathfrak{m}_A)$ denote the congruence subgroup consisting of matrices in $\mathrm{SL}_2(A)$ whose lower off-diagonal entry lies in the maximal ideal $\mathfrak{m}_A$. We also prove that there is an exact sequence $0\to \overline{\mathcal{P}}(k)[\frac{1}{2}]\to H_2(Γ_0(\mathfrak{m}_A),\mathbb{Z}[\frac{1}{2}])\to H_2(\mathrm{SL}_2(A),\mathbb{Z}[\frac{1}{2}])\to I^2(k)[\frac{1}{2}]\to 0$, where $I^2(k)$ is the second power of the fundamental ideal of the Grothendieck-Witt ring $\mathrm{GW}(k)$ and $\overline{\mathcal{P}}(k)$ is a certain quotient of the scissors congruence group (in the sense of Dupont-Sah) $\mathcal{P}(k)$ of $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源