论文标题
扬的半正态基础向量及其分母
Young's seminormal basis vectors and their denominators
论文作者
论文摘要
我们研究了对称组的双SpecHT模块的Young的拟态基矢量,该模块由某些类别的标准tableaux及其分母索引。这些向量包括那些分母控制规范形态$δ(λ+μ)\ toδ(λ)\ otimesΔ(μ)$ a $ \ m arthbb {z} _ {(p)$ the $ t y $ fy $ by $ n o $ weyl schur alge Alge Alge Alge Alge Alge Alge Alge Alge Alge n $ \ utimimesΔ(μ)$Δ(μ)$Δ(μ)Δ(μ)Δ(μ)$Δ
We study Young's seminormal basis vectors of the dual Specht modules of the symmetric group, indexed by a certain class of standard tableaux, and their denominators. These vectors include those whose denominators control the splitting of the canonical morphism $Δ(λ+μ) \to Δ(λ) \otimes Δ(μ)$ over $\mathbb{Z}_{(p)}$, where $Δ(ν)$ is the Weyl module of the classical Schur algebra labelled by $ν$.