论文标题

扬的半正态基础向量及其分母

Young's seminormal basis vectors and their denominators

论文作者

Fang, Ming, Lim, Kay Jin, Tan, Kai Meng

论文摘要

我们研究了对称组的双SpecHT模块的Young的拟态基矢量,该模块由某些类别的标准tableaux及其分母索引。这些向量包括那些分母控制规范形态$δ(λ+μ)\ toδ(λ)\ otimesΔ(μ)$ a $ \ m arthbb {z} _ {(p)$ the $ t y $ fy $ by $ n o $ weyl schur alge Alge Alge Alge Alge Alge Alge Alge Alge Alge n $ \ utimimesΔ(μ)$Δ(μ)$Δ(μ)Δ(μ)Δ(μ)$Δ

We study Young's seminormal basis vectors of the dual Specht modules of the symmetric group, indexed by a certain class of standard tableaux, and their denominators. These vectors include those whose denominators control the splitting of the canonical morphism $Δ(λ+μ) \to Δ(λ) \otimes Δ(μ)$ over $\mathbb{Z}_{(p)}$, where $Δ(ν)$ is the Weyl module of the classical Schur algebra labelled by $ν$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源