论文标题

纽顿后第六次二进制系统的非本地动力学

Sixth post-Newtonian nonlocal-in-time dynamics of binary systems

论文作者

Bini, Donato, Damour, Thibault, Geralico, Andrea

论文摘要

我们通过对重力相互作用的两体系统的局部时间动力学完成了以前的派生,通过给出了两个量规不变的互补非定位时动力学的特征,以进行重力相互作用的两体系统的局部时间动力学。一方面,我们计算出散射角的非局部部分,以用于氢化体般的运动。另一方面,我们计算平均(Delaunay)Hamiltonian的非本地部分,用于椭圆形运动。前者被计算为大角度摩肌的扩展(此处给出了近代到领先的顺序),而后者则以小含量扩展(此处给出第十阶)。我们在散射角的非本地部分中注意到$ζ(3)$的外观。然后,对椭圆形运动的平均哈密顿量为椭圆形动作产生了另外两个量规不变的可观察物:作为轨道频率的功能,能量和尿液序列。我们指出,在两体系统的重力波能量损失的质量比率依赖性中存在隐藏的简单性。

We complete our previous derivation, at the sixth post-Newtonian (6PN) accuracy, of the local-in-time dynamics of a gravitationally interacting two-body system by giving two gauge-invariant characterizations of its complementary nonlocal-in-time dynamics. On the one hand, we compute the nonlocal part of the scattering angle for hyberboliclike motions; and, on the other hand, we compute the nonlocal part of the averaged (Delaunay) Hamiltonian for ellipticlike motions. The former is computed as a large-angular-momentum expansion (given here to next-to-next-to-leading order), while the latter is given as a small-eccentricity expansion (given here to the tenth order). We note the appearance of $ζ(3)$ in the nonlocal part of the scattering angle. The averaged Hamiltonian for ellipticlike motions then yields two more gauge-invariant observables: the energy and the periastron precession as functions of orbital frequencies. We point out the existence of a hidden simplicity in the mass-ratio dependence of the gravitational-wave energy loss of a two-body system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源