论文标题

连续时间马尔可夫链的极限分布的渐近尾巴

The asymptotic tails of limit distributions of continuous time Markov chains

论文作者

Xu, Chuang, Hansen, Mads Christian, Wiuf, Carsten

论文摘要

本文调查了非阴性整数子集对连续时间马尔可夫链的固定分布和准平台分布(QSD)的尾巴渐近学。基于所谓的通量平衡方程,我们为固定度量和QSD建立了身份,我们用来得出尾部渐近性。特别是,使用三个易于计算的参数将具有渐近功率定律过渡速率的连续时间马尔可夫链分为三种类型:(i)超指定分布,(ii)指数式尾分布和(iii)亚指数分布。我们建立固定分布的尾巴渐近学的方法与经典的半明星方法不同,我们不会施加刻薄的和矩的条件。特别是,结果也适用于可能存在多个固定分布的爆炸性马尔可夫链。此外,我们在QSD的尾巴渐近学上的结果似乎是新的。我们将结果应用于生物化学反应网络,这是一种一般的单细胞随机基因表达模型,扩展的分支过程和随机繁殖的随机种群过程,其中一个都是出生死亡过程。该方法与身份一起很容易扩展到离散的时间马尔可夫链。

This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions (QSDs) of continuous-time Markov chains on subsets of the non-negative integers. Based on the so-called flux-balance equation, we establish identities for stationary measures and QSDs, which we use to derive tail asymptotics. In particular, continuous-time Markov chains with asymptotic power law transition rates, tail asymptotics for stationary distributions and QSDs are classified into three types using three easily computable parameters: (i) super-exponential distributions, (ii) exponential-tailed distributions, and (iii) sub-exponential distributions. Our approach to establish tail asymptotics of stationary distributions is different from the classical semimartingale approach, and we do not impose ergodicity nor moment bound conditions. In particular, the results also hold for explosive Markov chains, for which multiple stationary distributions may exist. Furthermore, our results on tail asymptotics of QSDs seem new. We apply our results to biochemical reaction networks, a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth-death processes. The approach together with the identities easily extends to discrete time Markov chains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源