论文标题
Lipschitz的贝德福德 - 麦克木糖地毯与均匀水平纤维的分类
Lipschitz classification of Bedford-McMullen carpets with uniform horizontal fibers
论文作者
论文摘要
令$ {\ cal m} _ {t,v,r}(n,m)$,$ 2 \ 2 \ leq m <n $,是自动式地毯的收集,它们具有扩展的矩阵$ \ diag(n,m)$,这些矩阵(n,m)$完全断开,具有空置的行,具有统一的空缺且具有统一的水平纤维。在本文中,我们介绍了公制空间的结构树的概念,因此,由于这个新概念,我们完全表征了$ {\ cal m} _ {t,v,v,r}(n,m)$的两个地毯是lipschitz等效的。
Let ${\cal M}_{t,v,r}(n,m)$, $2\leq m<n$, be the collection of self-affine carpets with expanding matrix $\diag(n,m)$ which are totally disconnected, possessing vacant rows and with uniform horizontal fibers. In this paper, we introduce a notion of structure tree of a metric space, and thanks to this new notion, we completely characterize when two carpets in ${\cal M}_{t,v,r}(n,m)$ are Lipschitz equivalent.