论文标题
用于混合延伸图像恢复的学习解开特征表示
Learning Disentangled Feature Representation for Hybrid-distorted Image Restoration
论文作者
论文摘要
混合延伸的图像恢复(HD-IR)专门用于恢复由多种变形降解的真实扭曲图像。现有的HD-IR方法通常忽略损害恢复性能的混合失真之间的固有干扰。为了分解这种干扰,我们介绍了分离特征学习的概念,以实现特征级别的混合扭曲的分裂和折叠。具体而言,我们建议特征分离模块(FDM)通过修改基于增益控制的归一化来将不同扭曲的特征表示分布到不同的通道中。我们还提出了一个特征聚合模块(FAM),并注意渠道的注意力,以适应过滤失真表示,并从不同渠道中汇总有用的内容信息,以构建原始图像。通过可视化特征的相关矩阵和不同扭曲的通道响应的相关矩阵来验证所提出的方案的有效性。与最新的HD-IR方案相比,广泛的实验结果也证明了我们的方法的卓越性能。
Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restoration performance. To decompose such interference, we introduce the concept of Disentangled Feature Learning to achieve the feature-level divide-and-conquer of hybrid distortions. Specifically, we propose the feature disentanglement module (FDM) to distribute feature representations of different distortions into different channels by revising gain-control-based normalization. We also propose a feature aggregation module (FAM) with channel-wise attention to adaptively filter out the distortion representations and aggregate useful content information from different channels for the construction of raw image. The effectiveness of the proposed scheme is verified by visualizing the correlation matrix of features and channel responses of different distortions. Extensive experimental results also prove superior performance of our approach compared with the latest HD-IR schemes.