论文标题

深层模型和短波红外信息,以检测面部表现攻击

Deep Models and Shortwave Infrared Information to Detect Face Presentation Attacks

论文作者

Heusch, Guillaume, George, Anjith, Geissbuhler, David, Mostaani, Zohreh, Marcel, Sebastien

论文摘要

本文使用不同的图像方式解决了面部表现攻击检测的问题。特别是,考虑使用短波红外(SWIR)成像。面对表现攻击检测是使用基于卷积神经网络的最新模型仅使用精心选择的SWIR图像差异作为输入进行的。进行的实验表明,在作用于颜色图像或不同模式的组合(可见,NIR,热和深度)以及对SWIR图像差异作用的基于SVM的分类器上的相似模型表明,表现出色。实验已进行了新的公众和免费可用的数据库,其中包含各种攻击。由于几个传感器导致可见,NIR,SWIR和热光谱以及深度数据中的14个不同的流以及深度数据,因此已记录了视频序列。最佳建议的方法几乎能够完美地检测所有模仿攻击,同时确保微不足道的分类错误。另一方面,获得的结果表明,混淆攻击更难检测到。我们希望拟议的数据库能够促进有关这个具有挑战性问题的研究。最后,研究界都可以使用所有复制提出的实验的代码和说明。

This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as input. Conducted experiments show superior performance over similar models acting on either color images or on a combination of different modalities (visible, NIR, thermal and depth), as well as on a SVM-based classifier acting on SWIR image differences. Experiments have been carried on a new public and freely available database, containing a wide variety of attacks. Video sequences have been recorded thanks to several sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal spectra, as well as depth data. The best proposed approach is able to almost perfectly detect all impersonation attacks while ensuring low bonafide classification errors. On the other hand, obtained results show that obfuscation attacks are more difficult to detect. We hope that the proposed database will foster research on this challenging problem. Finally, all the code and instructions to reproduce presented experiments is made available to the research community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源