论文标题
自适应垃圾箱包装溢出
Adaptive Bin Packing with Overflow
论文作者
论文摘要
由爆发带宽分配以及将虚拟机分配给云中的服务器的动机,我们考虑了将随机大小包装成单位容量箱中的在线问题。项目顺序到达,但是到达后,项目的实际大小是未知的。只有其概率信息才能提供给决策者。在不知道这种尺寸的情况下,决策者必须不可撤销地将物品打包到可用的垃圾箱中或将其放入新的垃圾箱中。一旦包装在垃圾箱中,决策者就会观察物品的实际尺寸,并且可以溢出垃圾箱。溢出会产生巨大的罚款成本,而相应的垃圾箱在其余过程中无法使用。实际上,这种溢出模型延迟了服务,服务器故障和/或最终用户善意的损失。目的是最大程度地减少开放垃圾箱数量和溢出罚款成本的总和的总预期成本。我们提出了一种在线算法,其预期成本最多是恒定因素乘以最佳包装策略所产生的成本,而从I.I.D汲取了项目尺寸。长度未知的顺序。当项目尺寸分布呈指数级(任意费率)时,我们给出类似的结果。我们还研究了离线模型,该模型已提前知道,但必须依次包装。我们为此问题构建了一个软容量的PTA,并表明计算最佳离线成本的复杂性为$ \#\ Mathbf {p} $ - 硬。最后,我们对在线算法的性能提供了一项实证研究。
Motivated by bursty bandwidth allocation and by the allocation of virtual machines to servers in the cloud, we consider the online problem of packing items with random sizes into unit-capacity bins. Items arrive sequentially, but upon arrival an item's actual size is unknown; only its probabilistic information is available to the decision maker. Without knowing this size, the decision maker must irrevocably pack the item into an available bin or place it in a new bin. Once packed in a bin, the decision maker observes the item's actual size, and overflowing the bin is a possibility. An overflow incurs a large penalty cost and the corresponding bin is unusable for the rest of the process. In practical terms, this overflow models delayed services, failure of servers, and/or loss of end-user goodwill. The objective is to minimize the total expected cost given by the sum of the number of opened bins and the overflow penalty cost. We present an online algorithm with expected cost at most a constant factor times the cost incurred by the optimal packing policy when item sizes are drawn from an i.i.d. sequence of unknown length. We give a similar result when item size distributions are exponential with arbitrary rates. We also study the offline model, where distributions are known in advance but must be packed sequentially. We construct a soft-capacity PTAS for this problem, and show that the complexity of computing the optimal offline cost is $\#\mathbf{P}$-hard. Finally, we provide an empirical study of our online algorithm's performance.