论文标题

抛物线式Hecke subselgebras的Freeness和Trace猜想

The freeness and trace conjectures for parabolic Hecke subalgebras

论文作者

Chavli, Eirini, Chlouveraki, Maria

论文摘要

The two most fundamental conjectures on the structure of the generic Hecke algebra $\mathcal{H}(W)$ associated with a complex reflection group $W$ state that $\mathcal{H}(W)$ is a free module of rank $|W|$ over its ring of definition, and that $\mathcal{H}(W)$ admits a canonical symmetrising trace.第一个猜想最近已成为一个定理,而第二个猜想(已知是真正的反思组的猜想)仅被证明是针对某些非现实的非现实复合体反射组(所有排名$ 2 $,但一个)。关于抛物线寄生虫hecke submalgebra $ \ Mathcal {h}(h}(w')$的两个最基本的猜想,与抛物线子组$ w $ of $ w $相关联$ \ MATHCAL {H}(w')$的规范对称跟踪是$ \ MATHCAL {H}(w)$ to $ \ MATHCAL {h h}(h}(w')$的规范对称跟踪的限制。到目前为止,这两个猜想仅在实际反射组中是正确的。我们证明了所有复杂反思组的排名$ 2 $,而BMM对称痕量猜想的持有。

The two most fundamental conjectures on the structure of the generic Hecke algebra $\mathcal{H}(W)$ associated with a complex reflection group $W$ state that $\mathcal{H}(W)$ is a free module of rank $|W|$ over its ring of definition, and that $\mathcal{H}(W)$ admits a canonical symmetrising trace. The first conjecture has recently become a theorem, while the second conjecture, known to hold for real reflection groups, has only been proved for some exceptional non-real complex reflection groups (all of rank $2$ but one). The two most fundamental conjectures on the structure of the parabolic Hecke subalgebra $\mathcal{H}(W')$ associated with a parabolic subgroup $W'$ of $W$ state that $\mathcal{H}(W)$ is a free left and right $\mathcal{H}(W')$-module of rank $|W|/|W'|$, and that the canonical symmetrising trace of $\mathcal{H}(W')$ is the restriction of the canonical symmetrising trace of $\mathcal{H}(W)$ to $\mathcal{H}(W')$. Until now, these two conjectures have only be known to be true for real reflection groups. We prove them for all complex reflection groups of rank $2$ for which the BMM symmetrising trace conjecture is known to hold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源