论文标题
在常规上可分开的紧凑$ \ mathbb {r} $ - 刚性空间
On regular separable countably compact $\mathbb{R}$-rigid spaces
论文作者
论文摘要
如果有连续地图$ f:x \ rightarrow y $是常数,则据说$ x $是{\ em $ y $ -rigid}。在本文中,我们构建了许多常规紧凑型$ \ Mathbb r $ rigid空间的示例,并具有其他属性,例如可分离性和首次可算置。这样,我们回答了Tzannes,Banakh,Ravsky的几个问题,并获得了$ \ Mathbb r $ rigid nyikos Space的一致示例。另外,我们表明,与ZFC相一致,每个红衣主教$κ<\ mathfrak c $都存在常规可分开的可分离紧凑型空间$ x $,相对于任何$ y $ y $ rigid,相对于任何$ t_1 $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $ y $
A topological space $X$ is said to be {\em $Y$-rigid} if any continuous map $f:X\rightarrow Y$ is constant. In this paper we construct a number of examples of regular countably compact $\mathbb R$-rigid spaces with additional properties like separability and first countability. This way we answer several questions of Tzannes, Banakh, Ravsky, as well as get a consistent example of $\mathbb R$-rigid Nyikos space. Also, we show that it is consistent with ZFC that for every cardinal $κ<\mathfrak c$ there exists a regular separable countably compact space $X$ which is $Y$-rigid with respect to any $T_1$ space $Y$ of pseudocharacter $\leqκ$.