论文标题
Ginzberg-Landau-Wilson理论,用于平坦的频段,Fermi-Arc和强度相关系统的表面状态
Ginzberg-Landau-Wilson theory for Flat band, Fermi-arc and surface states of strongly correlated systems
论文作者
论文摘要
我们将全息理论视为在量子临界点附近强烈相互作用系统的Ginzberg-Landau理论:我们将散装物质字段$φ^i(r,x)$,fermion biinear的双重二线作为顺序参数。我们在存在此类顺序的情况下计算和分类费米光谱函数。根据对称性的不同,我们发现了光谱特征,例如差距,伪间隙,平盘带和连接两个狄拉克锥的Fermi-arc,这些圆锥在狄拉克材料和近野晶格中都很熟悉。以上许多特征与零模式有关,其存在与相互作用的离散对称性绑定。相互作用诱导的零模式可以使系统fermi-liquid像磁盘一样,或者创建磁盘状的平坦频带。批量理论中的某些顺序参数没有对边界空间的对称破坏的解释,这打开了“没有对称性破坏的秩序”的可能性。
We consider a holographic theory as a Ginzberg-Landau theory working for strongly interacting system near the quantum critical point: we take the bulk matter field $Φ^I(r,x)$, the dual of the fermion bilinear, as the order parameter. We calculate and classify the fermion spectral functions in the presence of such orders. Depending on the symmetry, we found spectral features like the gap, pseudo-gap, flat disk bands and the Fermi-arc connecting the two Dirac cones, which are familiar in Dirac material and Kondo lattice. Many of above features are associated with the zero modes whose presence is tied with a discrete symmetry of the interaction. The interaction induced zero modes either makes the strongly correlated system fermi-liquid like, or creates a disk-like flat band. Some of the order parameters in the bulk theory do not have an interpretation of symmetry breaking in terms of the boundary space, which opens the possibility of 'an order without symmetry breaking'.