论文标题
全组IV膜室 - 温度中红外光电探测器
All-Group IV membrane room-temperature mid-infrared photodetector
论文作者
论文摘要
应变工程一直是一种无处不在的范式,可定制电子带结构并利用半导体中相关的新的或增强的基本特性。在这方面,半导体膜成为一种多功能类的纳米级材料,用于控制晶格菌株和工程师复杂的异质结构,从而导致各种创新应用的发展。本文中,我们利用这个准两维平台同时调整IV组GESN半导体合金中的晶格参数和带隙能。随着SN含量的增加以达到直接带隙,这些半导体变得可稳定,通常会压缩。我们表明,GESN膜的释放和转移导致明显的弛豫,从而扩大了中红外的吸收波长范围。完全释放的GE $ _ {0.83} $ sn $ _ {0.17} $膜已集成在硅上,用于制造在室温下运行的宽带光电探测器,创纪录的波长临界值为4.6 $μ$ m,而不会在较短的波长下降低到2.3 $ $ m $ m $ m $ m $ m $ $ m $。这些膜设备的特征是黑暗电流的两个数量级降低,与从成长的紧张的外延层处理的设备相比。后者在2.6-3.5 $ $ m的范围内表现出内容依赖性的,较短的波长截止,因此突出了晶格应变弛豫在塑造膜光电探测器的光谱响应中的作用。这种能够设计全组IV转移的中红外光电电视器的能力为实施可扩展和柔性的感应和成像技术,利用这些综合,硅兼容的紧张性释放的GESN膜。
Strain engineering has been a ubiquitous paradigm to tailor the electronic band structure and harness the associated new or enhanced fundamental properties in semiconductors. In this regard, semiconductor membranes emerged as a versatile class of nanoscale materials to control lattice strain and engineer complex heterostructures leading to the development of a variety of innovative applications. Herein we exploit this quasi-two-dimensional platform to tune simultaneously the lattice parameter and bandgap energy in group IV GeSn semiconductor alloys. As Sn content is increased to reach a direct band gap, these semiconductors become metastable and typically compressively strained. We show that the release and transfer of GeSn membranes lead to a significant relaxation thus extending the absorption wavelength range deeper in the mid-infrared. Fully released Ge$_{0.83}$Sn$_{0.17}$ membranes were integrated on silicon and used in the fabrication of broadband photodetectors operating at room temperature with a record wavelength cutoff of 4.6 $μ$m, without compromising the performance at shorter wavelengths down to 2.3 $μ$m. These membrane devices are characterized by two orders of magnitude reduction in dark current as compared to devices processed from as-grown strained epitaxial layers. The latter exhibit a content-dependent, shorter wavelength cutoff in the 2.6-3.5 $μ$m range, thus highlighting the role of lattice strain relaxation in shaping the spectral response of membrane photodetectors. This ability to engineer all-group IV transferable mid-infrared photodetectors lays the groundwork to implement scalable and flexible sensing and imaging technologies exploiting these integrative, silicon-compatible strained-relaxed GeSn membranes.