论文标题

通过贝叶斯优化的性能驱动级联控制器调整

Performance-Driven Cascade Controller Tuning with Bayesian Optimization

论文作者

Khosravi, Mohammad, Behrunani, Varsha, Myszkorowski, Piotr, Smith, Roy S., Rupenyan, Alisa, Lygeros, John

论文摘要

我们为级联控制系统提出了一种基于性能的自动调节方法,其中共同调整了两个控制循环的线性轴驱动运动控制器的参数。使用贝叶斯优化,因为所有参数均已同时调整,该方法可确保渐近地收敛到整体的成本最佳。该方法的数据效率和性能是数值研究的,用于几种培训配置,并将其与经典调整方法和成本的详尽评估进行数值比较。在实际系统上,对扰动的跟踪性能和鲁棒性是通过实验比较的标称调整。数值研究和实验数据都表明,在所需的调整迭代,对扰动的鲁棒性和改善的跟踪方面,提出的自动调整方法有效。

We propose a performance-based autotuning method for cascade control systems, where the parameters of a linear axis drive motion controller from two control loops are tuned jointly. Using Bayesian optimization as all parameters are tuned simultaneously, the method is guaranteed to converge asymptotically to the global optimum of the cost. The data-efficiency and performance of the method are studied numerically for several training configurations and compared numerically to those achieved with classical tuning methods and to the exhaustive evaluation of the cost. On the real system, the tracking performance and robustness against disturbances are compared experimentally to nominal tuning. The numerical study and the experimental data both demonstrate that the proposed automated tuning method is efficient in terms of required tuning iterations, robust to disturbances, and results in improved tracking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源