论文标题

统一的治疗效果调查异质性建模和提升建模

A unified survey of treatment effect heterogeneity modeling and uplift modeling

论文作者

Zhang, Weijia, Li, Jiuyong, Liu, Lin

论文摘要

科学研究许多领域的一个核心问题是确定结果将如何受到行动的影响或衡量行动的影响(又称治疗效果)。近年来,需要从个性化的医疗保健,社会科学和在线营销等研究领域估算对个体不同特征的异质治疗效果调节的需求。为了满足需求,来自不同社区的研究人员和从业人员分别采用治疗效果异质性建模方法和提升建模方法来开发算法。在本文中,我们对潜在的结果框架下的这两种看似断开但密切相关的方法进行了统一的调查。然后,我们通过使用一组统一的符号来强调其固有连接,从而对现有方法进行结构化调查,以使不同方法的比较轻松进行比较。然后,我们回顾了被调查方法在个性化营销,个性化医学和社会研究中的主要应用。最后,我们根据使用合成,半合成和现实世界数据集的方法来概括现有的软件包,并进行讨论,并为选择方法提供一些一般指南。

A central question in many fields of scientific research is to determine how an outcome would be affected by an action, or to measure the effect of an action (a.k.a treatment effect). In recent years, a need for estimating the heterogeneous treatment effects conditioning on the different characteristics of individuals has emerged from research fields such as personalized healthcare, social science, and online marketing. To meet the need, researchers and practitioners from different communities have developed algorithms by taking the treatment effect heterogeneity modeling approach and the uplift modeling approach, respectively. In this paper, we provide a unified survey of these two seemingly disconnected yet closely related approaches under the potential outcome framework. We then provide a structured survey of existing methods by emphasizing on their inherent connections with a set of unified notations to make comparisons of the different methods easy. We then review the main applications of the surveyed methods in personalized marketing, personalized medicine, and social studies. Finally, we summarize the existing software packages and present discussions based on the use of methods on synthetic, semi-synthetic and real world data sets and provide some general guidelines for choosing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源