论文标题

没有奇异的连续光谱和嵌入的特征值一维量子步行

Absence of singular continuous spectra and embedded eigenvalues for one dimensional quantum walks with general long-range coins

论文作者

Maeda, Masaya, Suzuki, Akito, Wada, Kazuyuki

论文摘要

本文是第三作者的纸\ cite {w}的延续,该论文研究了量子步行,并使用了硬币操作员的特殊远程扰动。在本文中,我们考虑了硬币操作员的一般远程扰动,并证明了单数连续频谱和嵌入特征值的不存在。证明依赖于在\ cite {MSSSSDIS}中的短程案例中研究的广义本征函数(JOST解决方案)的构建。

This paper is a continuation of the paper \cite{W} by the third author, which studied quantum walks with special long-range perturbations of the coin operator. In this paper, we consider general long-range perturbations of the coin operator and prove the non-existence of a singular continuous spectrum and embedded eigenvalues. The proof relies on the construction of generalized eigenfunctions (Jost solutions) which was studied in the short-range case in \cite{MSSSSdis}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源