论文标题

三阶段的智能支持临床决策,以提高信任,有效性和解释性

Three-stage intelligent support of clinical decision making for higher trust, validity, and explainability

论文作者

Kovalchuk, Sergey V., Kopanitsa, Georgy D., Derevitskii, Ilia V., Savitskaya, Daria A.

论文摘要

本文提出了一种使用数据驱动的预测模型来构建一致且适用的临床决策支持系统(CDSS)的方法,该模型旨在解决现实世界中CDSS的低适用性和可扩展性问题。该方法基于特定于域特异性和数据驱动的支持程序的三个应用,该程序将集成到具有更高的信任和预测结果和建议的解释性的临床业务过程中。在被考虑的三个阶段中,整合了监管政策,数据驱动模式和解释程序,以使自然领域的特定互动与决策者进行智能决策支持重点的顺序缩小。所提出的方法可以使CDSS的更高水平的自动化,可伸缩性和语义解释性。该方法是在软件解决方案中实施的,并在T2DM预测中的案例研究中进行了测试,从而使我们能够改善已知的临床量表(例如FindRisk),同时保持与现有应用相似的特定于问题的推理界面。这种继承以及三个阶段的方法提供了解决方案的更高兼容性,并导致在现实情况下,可以对数据驱动的解决方案的信任,有效且可解释的应用。

The paper presents an approach for building consistent and applicable clinical decision support systems (CDSSs) using a data-driven predictive model aimed at resolving the problem of low applicability and scalability of CDSSs in real-world applications. The approach is based on a threestage application of domain-specific and data-driven supportive procedures that are to be integrated into clinical business processes with higher trust and explainability of the prediction results and recommendations. Within the considered three stages, the regulatory policy, data-driven modes, and interpretation procedures are integrated to enable natural domain-specific interaction with decisionmakers with sequential narrowing of the intelligent decision support focus. The proposed methodology enables a higher level of automation, scalability, and semantic interpretability of CDSSs. The approach was implemented in software solutions and tested within a case study in T2DM prediction, enabling us to improve known clinical scales (such as FINDRISK) while keeping the problem-specific reasoning interface similar to existing applications. Such inheritance, together with the three-staged approach, provide higher compatibility of the solution and leads to trust, valid, and explainable application of data-driven solutions in real-world cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源