论文标题

整数量子厅流体的非线性边缘动力学

Non-linear edge dynamics of an Integer Quantum Hall fluid

论文作者

Nardin, Alberto, Carusotto, Iacopo

论文摘要

我们报告了一个非相互作用费米的整数量子霍尔状态的边缘激发的线性和非线性动力学的理论研究。预计手性Luttinger液体图片以外的新功能将来自Landau级分散和Pauli排除原则的曲率相互作用。对于长波长扰动,微观数值结果是通过手性非线性流体动力方程(包括密度依赖性速度项)捕获的。在破坏性方案中,发现冲击波通过分散效应将冲击波正规化为复杂的连锁图案。我们的结果与合成量子物质的实验,特别是超速原子气体具有特异性相关性。

We report a theoretical study of the linear and nonlinear dynamics of edge excitations of an integer quantum Hall state of non-interacting fermions. New features beyond the chiral Luttinger liquid picture are anticipated to arise from the interplay of the curvature of the Landau level dispersion and of the Pauli exclusion principle. For long-wavelength perturbations, the microscopic numerical results are captured by a chiral nonlinear hydrodynamic equation including a density-dependent velocity term. In the wave-breaking regime, shock waves are found to be regularized into a complex ripple pattern by dispersion effects. Our results are of specific relevance for experiments with synthetic quantum matter, in particular ultracold atomic gases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源