论文标题

Tantala Kerr-Nonlinear综合光子学

Tantala Kerr-nonlinear integrated photonics

论文作者

Jung, Hojoong, Yu, Su-Peng, Carlson, David R., Drake, Tara E., Briles, Travis C., Papp, Scott B.

论文摘要

综合光子学在现代科学和技术中起着核心作用,从而使从非线性科学到量子信息,超电重新测量和传感以及高级应用(如数据通信和信号处理)实现了实验。具有良好特性的光学材料对于集成 - 光谱设备的纳米化至关重要。在这里,我们描述了一种综合非线性光子学的材料,坦塔塔勒五氧化盐(TA $ _2 $ o $ _5 $,以下称tantala),该材料提供了低固有的材料压力,低光学损失和有效访问Kerr-noninlineareare流程。我们利用> 800 nm厚的Tantala膜,这些薄膜通过离子梁溅射在氧化的硅晶片上。 Tantala膜的残余拉应力低38 MPa,它们提供了Kerr索引$ n_2 $ = 6.2(23)$ \ times10^{ - 19} $ M $^2 $/w,大约比硝酸盐高三个。我们制造了集成的非线性谐振器和波导,而没有在化学计量硅硝酸盐中引起的开裂挑战。 Tantala谐振器具有最高$ 3.8 \ times10^6 $的光学质量因子,这使我们能够生成具有低阈值功率的超子宽带Kerr-Soliton频率梳子。此外,Tantala波导可以从低能量,超快的种子脉冲中跨过近红外的超脑产生。我们的工作介绍了一个多功能的材料平台,用于综合,低损坏的纳米光子学,可以广泛应用并实现异质整合。

Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal processing. Optical materials with favorable properties are essential for nanofabrication of integrated-photonics devices. Here we describe a material for integrated nonlinear photonics, tantalum pentoxide (Ta$_2$O$_5$, hereafter tantala), which offers low intrinsic material stress, low optical loss, and efficient access to Kerr-nonlinear processes. We utilize >800-nm thick tantala films deposited via ion-beam sputtering on oxidized silicon wafers. The tantala films contain a low residual tensile stress of 38 MPa, and they offer a Kerr index $n_2$=6.2(23)$\times10^{-19}$ m$^2$/W, which is approximately a factor of three higher than silicon nitride. We fabricate integrated nonlinear resonators and waveguides without the cracking challenges that are prevalent in stoichiometric silicon nitride. The tantala resonators feature an optical quality factor up to $3.8\times10^6$, which enables us to generate ultrabroad-bandwidth Kerr-soliton frequency combs with low threshold power. Moreover, tantala waveguides enable supercontinuum generation across the near-infrared from low-energy, ultrafast seed pulses. Our work introduces a versatile material platform for integrated, low-loss nanophotonics that can be broadly applied and enable heterogeneous integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源