论文标题

Selmer组的多重性和Artin Twist的根号

Multiplicities in Selmer groups and root numbers for Artin twists

论文作者

Jha, Somnath, Mandal, Tathagata, Shekhar, Sudhanshu

论文摘要

令$ k/f $为数字字段的有限galois扩展名,$σ$是$ \ mathrm {gal}(k/f)$的绝对不可约,自动划分表示。让$ p $是一个奇怪的素数,考虑两条椭圆曲线$ e_1,e_2 $,良好,普通降低,以高于$ p $和同等的mod- $ p $ galois表示形式。在本文中,我们研究了与$ p^\ infty $ -selmer组相关的表示空间中$σ$ $σ$ $σ$的均等差异。我们还将$ e_i/f $ $σ$的扭曲的根号($ p $ - parity的猜想都具有$ e_1/f $ by $σ$时的扭曲时,并且仅在$ e_2/f $ $σ$时。我们还用某些当地的伊瓦沙瓦(Iwasawa)不变式来表达Mazur-Rubin-Neková列的算术本地常数。

Let $K/F$ be a finite Galois extension of number fields and $σ$ be an absolutely irreducible, self-dual representation of $\mathrm{Gal}(K/F)$. Let $p$ be an odd prime and consider two elliptic curves $E_1, E_2$ with good, ordinary reduction at primes above $p$ and equivalent mod-$p$ Galois representations. In this article, we study the variation of the parity of the multiplicities of $σ$ in the representation space associated to the $p^\infty$-Selmer group of $E_i$ over $K$. We also compare the root numbers for the twist of $E_i/F$ by $σ$ and show that the $p$-parity conjecture holds for the twist of $E_1/F$ by $σ$ if and only if it holds for the twist of $E_2/F$ by $σ$. We also express Mazur-Rubin-Nekovář's arithmetic local constants in terms of certain local Iwasawa invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源