论文标题

偏见和身高

Ambidexterity and Height

论文作者

Carmeli, Shachar, Schlank, Tomer M., Yanovski, Lior

论文摘要

我们介绍并研究了\ emph {semaiadive height}的概念,用于更高的半价值$ \ infty $ - 类别,该类别概括了色度。我们表明,较高的半偏二维结构使高度高于高度,并证明了红移原理的一种形式,其中分类将高度增加一个。在稳定的环境中,我们表明,较高的半为$ \ infty $ - 类别根据高度分解为产品,并将高度的概念与本地系统的半透明性属性相关联。我们将更高的半多性和稳定性的研究放在粉碎$ pr^{l} $的本地化的一般框架中,我们将其称为\ emph {modes}。使用该理论,我们介绍和研究了通用稳定的$ \ infty $ - semiaDditive $ \ infty $ - semiaddive高度$ n $的类别,并为稳定的$ 1 $ semiaddive $ \ infty $ \ infty $ - 类别提供足够的条件。

We introduce and study the notion of \emph{semiadditive height} for higher semiadditive $\infty$-categories, which generalizes the chromatic height. We show that the higher semiadditive structure trivializes above the height and prove a form of the redshift principle, in which categorification increases the height by one. In the stable setting, we show that a higher semiadditive $\infty$-category decomposes into a product according to height, and relate the notion of height to semisimplicity properties of local systems. We place the study of higher semiadditivity and stability in the general framework of smashing localizations of $Pr^{L}$, which we call \emph{modes}. Using this theory, we introduce and study the universal stable $\infty$-semiadditive $\infty$-category of semiadditive height $n$, and give sufficient conditions for a stable $1$-semiadditive $\infty$-category to be $\infty$-semiadditive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源