论文标题
建模和预测人类机器人团队中的信任动态:贝叶斯推断方法
Modeling and Predicting Trust Dynamics in Human-Robot Teaming: A Bayesian Inference Approach
论文作者
论文摘要
在过去的二十年中,对自动化的信任或最近对自治的信任一直受到广泛的研究关注。大多数先前的文献都采用了信任的“快照”观点,通常通过在实验结束时通过调查表进行了评估信任。但是,这种“快照”视图并不承认信任是一个随着时间的推移可以增强或衰减的时变变量。为了填补研究差距,本研究旨在在人类随着时间的推移与机器人毒剂相互作用时建模信任动态。该研究的基本前提是,通过与机器人毒剂进行互动并观察其绩效随着时间的流逝,理性的人类代理人将相应地更新他/她对机器人代理的信任。基于此前提,我们基于beta分布开发了个性化的信任预测模型,并使用贝叶斯推理学习其参数。我们提出的模型遵守先前经验研究中报道的信任动态的三个主要特性。我们使用现有的数据集测试了提出的方法,其中涉及39名在模拟监视任务中与四个无人机互动的人类参与者。所提出的方法获得了0.072的根平方误(RMSE),显着优于现有的预测方法。此外,我们分别确定了三种独特的信任动态类型,分别是贝叶斯决策者,振荡器和不信任者。该预测模型可用于设计个性化和自适应技术。
Trust in automation, or more recently trust in autonomy, has received extensive research attention in the past two decades. The majority of prior literature adopted a "snapshot" view of trust and typically evaluated trust through questionnaires administered at the end of an experiment. This "snapshot" view, however, does not acknowledge that trust is a time-variant variable that can strengthen or decay over time. To fill the research gap, the present study aims to model trust dynamics when a human interacts with a robotic agent over time. The underlying premise of the study is that by interacting with a robotic agent and observing its performance over time, a rational human agent will update his/her trust in the robotic agent accordingly. Based on this premise, we develop a personalized trust prediction model based on Beta distribution and learn its parameters using Bayesian inference. Our proposed model adheres to three major properties of trust dynamics reported in prior empirical studies. We tested the proposed method using an existing dataset involving 39 human participants interacting with four drones in a simulated surveillance mission. The proposed method obtained a Root Mean Square Error (RMSE) of 0.072, significantly outperforming existing prediction methods. Moreover, we identified three distinctive types of trust dynamics, the Bayesian decision maker, the oscillator, and the disbeliever, respectively. This prediction model can be used for the design of individualized and adaptive technologies.