论文标题

可推广人员重新识别的双分配对准网络

Dual Distribution Alignment Network for Generalizable Person Re-Identification

论文作者

Chen, Peixian, Dai, Pingyang, Liu, Jianzhuang, Zheng, Feng, Tian, Qi, Ji, Rongrong

论文摘要

域概括(DG)是处理人员重新识别(RE-ID)的有前途的解决方案,该解决方案仅使用来自源域中的标签来训练模型,然后直接将受过训练的模型采用到目标域而无需模型更新。但是,由于显着的数据集变化,现有的DG方法通常受到严重域变化的干扰。随后,DG高度依赖于设计域不变的功能,但是它并不是很好地利用,因为大多数现有方法将多个数据集直接混合到基于DG的模型的情况下,而无需考虑本地数据集的相似性,即非常相似但来自不同域的示例。在本文中,我们提出了一个双分配对准网络(DDAN),该网络通过将图像映射到域不变特征空间中来解决此挑战,通过选择性地对齐多个源域的分布。这样的对齐方式是通过双级约束来进行的,即,域的对抗性特征学习和身份相似性的增强。我们评估了DDAN在大规模域泛化重新ID(DG RE-ID)基准上。定量结果表明,所提出的DDAN可以很好地对齐各种源域的分布,并显着优于所有现有域的概括方法。

Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID), which trains the model using labels from the source domain alone, and then directly adopts the trained model to the target domain without model updating. However, existing DG approaches are usually disturbed by serious domain variations due to significant dataset variations. Subsequently, DG highly relies on designing domain-invariant features, which is however not well exploited, since most existing approaches directly mix multiple datasets to train DG based models without considering the local dataset similarities, i.e., examples that are very similar but from different domains. In this paper, we present a Dual Distribution Alignment Network (DDAN), which handles this challenge by mapping images into a domain-invariant feature space by selectively aligning distributions of multiple source domains. Such an alignment is conducted by dual-level constraints, i.e., the domain-wise adversarial feature learning and the identity-wise similarity enhancement. We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark. Quantitative results demonstrate that the proposed DDAN can well align the distributions of various source domains, and significantly outperforms all existing domain generalization approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源