论文标题
打结的极化和3D多色波中的自旋
Knotted Polarizations and Spin in 3D Polychromatic Waves
论文作者
论文摘要
我们考虑了具有不同相称频率和极化的几个矢量波场的干扰中的复杂3D极化。我们表明,所得的极化可以形成结,干扰三波足以产生各种lissajous,torus和其他结。我们描述了这种打结的极化的旋转角动量,广义的Stokes参数和极化程度,这些偏光量可以被视为部分偏振。我们的结果对于任何矢量波场都是通用的,包括光波和声波。作为一个直接观察的例子,我们考虑了三种不同频率的地表水(重力)波的干扰中水颗粒的打结轨迹。
We consider complex 3D polarizations in the interference of several vector wave fields with different commensurable frequencies and polarizations. We show that the resulting polarizations can form knots, and interfering three waves is sufficient to generate a variety of Lissajous, torus, and other knot types. We describe the spin angular momentum, generalized Stokes parameters and degree of polarization for such knotted polarizations, which can be regarded as partially-polarized. Our results are generic for any vector wave fields, including, e.g., optical and acoustic waves. As a directly-observable example, we consider knotted trajectories of water particles in the interference of surface water (gravity) waves with three different frequencies.