论文标题
$ \ mathbf {f(r)} $重力真空解决方案的一般属性
General properties of $\mathbf {f(R)}$ gravity vacuum solutions
论文作者
论文摘要
$ f(r)$重力的真空解决方案的一般特性是通过韦尔张量的差异为零的条件和$ f''\ neq 0 $获得的。具体而言,一个定理指出,曲率标量的梯度$ \ nabla r $是Ricci张量的特征向量,如果是时间的,那么时空是一个广义的Friedman-Robertson-Walker-Walker度量;在第四维度中,是弗里德曼·罗伯逊·沃克(Friedman-Robertson-Walker)。
General properties of vacuum solutions of $f(R)$ gravity are obtained by the condition that the divergence of the Weyl tensor is zero and $f''\neq 0$. Specifically, a theorem states that the gradient of the curvature scalar, $\nabla R$, is an eigenvector of the Ricci tensor and, if it is time-like, the space-time is a Generalized Friedman-Robertson-Walker metric; in dimension four, it is Friedman-Robertson-Walker.