论文标题
对称破碎的Chern绝缘子和魔术系列的Rashba般的Landau水平交叉点在魔法角度双层石墨烯
Symmetry broken Chern insulators and magic series of Rashba-like Landau level crossings in magic angle bilayer graphene
论文作者
论文摘要
魔术角扭曲双层石墨烯(MATBG)的平坦频带最近成为探索强相关性,超导性和磁循环的丰富平台。但是,MATBG在磁场中的相位及其在零视野相图中揭示的相对未透明。在这里,我们使用磁电机和霍尔测量值来揭示与Chern数字C = +( - )1, +( - )2, +( - )3, +( - )4的量化霍尔电导的一系列楔形区域,这些区域来自Moire单位单元v = +()3, +()3, +( - )3, +(( - )2, +( - )2, +( - )2,( - )1、0,0.( - )4核。我们将这些阶段解释为旋转和山谷极化的切恩绝缘子,相当于量子霍尔铁磁体。 Chern数字和填充因子的确切序列和对应关系表明,这些状态直接由电子相互作用驱动,这些相互作用特别破坏了系统中的时间反转对称性。我们进一步研究了尚未开发的具有RASHBA样疾病的尚未探索的高能分散带中的量子磁振荡。对Landau级交叉的分析,可以与磁场中新衍生的魔术系列交叉点进行无参数的比较,并对Bistritzer-Macdonald Matbg Hamiltonian的参数W0和W1产生约束。总体而言,我们的数据提供了对MATBG中对称性破坏的复杂性质的直接见解,并可以对所提出的微观场景进行定量测试。
Flat-bands in magic angle twisted bilayer graphene (MATBG) have recently emerged as a rich platform to explore strong correlations, superconductivity and mag-netism. However, the phases of MATBG in magnetic field, and what they reveal about the zero-field phase diagram remain relatively unchartered. Here we use magneto-transport and Hall measurements to reveal a rich sequence of wedge-like regions of quantized Hall conductance with Chern numbers C = +(-)1, +(-)2, +(-)3, +(-)4 which nucleate from integer fillings of the moire unit cell v = +(-)3, +(-)2, +(-)1, 0 correspondingly. We interpret these phases as spin and valley polarized Chern insulators, equivalent to quantum Hall ferro-magnets. The exact sequence and correspondence of Chern numbers and filling factors suggest that these states are driven directly by electronic interactions which specifically break time-reversal symmetry in the system. We further study quantum magneto-oscillation in the yet unexplored higher energy dispersive bands with a Rashba-like dis-persion. Analysis of Landau level crossings enables a parameter-free comparison to a newly derived magic series of level crossings in magnetic field and provides constraints on the parameters w0 and w1 of the Bistritzer-MacDonald MATBG Hamiltonian. Over-all, our data provides direct insights into the complex nature of symmetry breaking in MATBG and allows for quantitative tests of the proposed microscopic scenarios for its electronic phases.