论文标题
限制随机线性程序中经验最佳解决方案的定律
Limit Laws for Empirical Optimal Solutions in Stochastic Linear Programs
论文作者
论文摘要
我们以标准形式考虑了一个通用线性程序,其右侧约束向量会受到随机扰动的影响。这定义了一个随机线性程序,在一般条件下,我们通过中央极限型定理表征了相应的经验最佳解决方案的波动。我们的方法取决于线性编程中固有的合并性质和退化性的概念,与平滑随机优化程序的众所周知的结果形成了鲜明的对比。特别是,如果相应的双线性程序是退化的,则渐近极限定律可能不是唯一的,并且根据选择经验最佳解决方案的方式确定。此外,我们建立了经验和真实最优性集之间Hausdorff距离的一致性和收敛速率。结果,我们针对所有双重最佳解决方案集的经验最佳价值推导了极限定律,这些解决方案原来是我们一般证明技术的简单结果。 我们的分析是从统计最佳运输的最新发现中引起的,这些发现将特别关注这里。除了最佳运输溶液的渐近极限定律外,我们还获得了将双重传输问题与基础地面空间的几何特性的脱落性联系起来的结果,并证明可能具有独立利益的唯一唯一性陈述。
We consider a general linear program in standard form whose right-hand side constraint vector is subject to random perturbations. This defines a stochastic linear program for which, under general conditions, we characterize the fluctuations of the corresponding empirical optimal solution by a central limit-type theorem. Our approach relies on the combinatorial nature and the concept of degeneracy inherent in linear programming, in strong contrast to well-known results for smooth stochastic optimization programs. In particular, if the corresponding dual linear program is degenerate the asymptotic limit law might not be unique and is determined from the way the empirical optimal solution is chosen. Furthermore, we establish consistency and convergence rates of the Hausdorff distance between the empirical and the true optimality sets. As a consequence, we deduce a limit law for the empirical optimal value characterized by the set of all dual optimal solutions which turns out to be a simple consequence of our general proof techniques. Our analysis is motivated from recent findings in statistical optimal transport that will be of special focus here. In addition to the asymptotic limit laws for optimal transport solutions, we obtain results linking degeneracy of the dual transport problem to geometric properties of the underlying ground space, and prove almost sure uniqueness statements that may be of independent interest.