论文标题

判别折刀:通过高阶影响功能量化深度学习的不确定性

Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

论文作者

Alaa, Ahmed M., van der Schaar, Mihaela

论文摘要

深度学习模型在各种各样的任务中实现了高预测的准确性,但是严格量化其预测性不确定性仍然具有挑战性。可用的预测不确定性估计值应(1)涵盖具有很高概率的真实预测目标,并且(2)区分高和低信心的预测实例。现有的不确定性定量方法主要基于贝叶斯神经网络。这些可能落在(1)和(2)中 - 即,贝叶斯可信间隔不能保证频繁的覆盖范围,并且近似的后推断会破坏判别精度。在本文中,我们开发了判别性折刀(DJ),这是一种经常使用的程序,它利用模型损失功能的影响功能来构建预测置信区间的夹克刀(或剩余的)估计器。 DJ满足(1)和(2)适用于广泛的深度学习模型,易于实现,并且可以以事后方式应用,而无需干扰模型培训或损害其准确性。实验表明,与现有的贝叶斯和非贝叶斯回归基线相比,DJ的性能竞争性。

Deep learning models achieve high predictive accuracy across a broad spectrum of tasks, but rigorously quantifying their predictive uncertainty remains challenging. Usable estimates of predictive uncertainty should (1) cover the true prediction targets with high probability, and (2) discriminate between high- and low-confidence prediction instances. Existing methods for uncertainty quantification are based predominantly on Bayesian neural networks; these may fall short of (1) and (2) -- i.e., Bayesian credible intervals do not guarantee frequentist coverage, and approximate posterior inference undermines discriminative accuracy. In this paper, we develop the discriminative jackknife (DJ), a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals. The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy. Experiments demonstrate that DJ performs competitively compared to existing Bayesian and non-Bayesian regression baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源