论文标题

量子马尔可夫半群的完整梯度估计

Complete gradient estimates of quantum Markov semigroups

论文作者

Wirth, Melchior, Zhang, Haonan

论文摘要

在本文中,我们介绍了配备有正常忠实的奇特状态的冯·诺伊曼代数对称对称量子马尔可夫半群的完整梯度估计,这意味着熵的半跨性别性相对于最近引入的非交换性的2-Wasserstein距离。我们表明,在张量产品和免费产品下,这种完整的梯度估计值稳定,并为许多示例确定其有效性。作为应用程序,我们证明了完全修改的对数Sobolev不等式,对于自由组因子的泊松型半群,最佳常数。

In this article we introduce a complete gradient estimate for symmetric quantum Markov semigroups on von Neumann algebras equipped with a normal faithful tracial state, which implies semi-convexity of the entropy with respect to the recently introduced noncommutative 2-Wasserstein distance. We show that this complete gradient estimate is stable under tensor products and free products and establish its validity for a number of examples. As an application we prove a complete modified logarithmic Sobolev inequality with optimal constant for Poisson-type semigroups on free group factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源