论文标题

学习顺序决策的“假设”解释

Learning "What-if" Explanations for Sequential Decision-Making

论文作者

Bica, Ioana, Jarrett, Daniel, Hüyük, Alihan, van der Schaar, Mihaela

论文摘要

基于证明的行为(即,通过最大化某些未知奖励功能的专家做出的观察和行动的轨迹)对现实世界决策进行可解释的参数化 - 对于在不同机构中的内省和审计政策至关重要。在本文中,我们提出了针对专家决策的学习解释,通过对“如果”结果的偏好进行建模,以建模其奖励功能:鉴于当前的观察历史,如果我们采取了特定的行动,该怎么办?为了学习与专家的行为相关的这些成本效益的权衡,我们将反事实推理整合到批处理逆增强学习中。这提供了定义奖励功能和解释专家行为的原则方法,并且还满足了现实世界决策的限制 - 在这种情况下通常不可能进行积极的实验(例如,在医疗保健中)。此外,通过估算不同动作的影响,反事实很容易在批处理设置中应对政策评估的政策性质,并且可以自然地适应专家政策取决于观察的历史而不仅仅是当前状态的设置。通过在真实和模拟的医学环境中进行的说明性实验,我们强调了批次,反事实逆增强学习方法在恢复准确且可解释的行为描述方面的有效性。

Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior -- i.e. trajectories of observations and actions made by an expert maximizing some unknown reward function -- is essential for introspecting and auditing policies in different institutions. In this paper, we propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes: Given the current history of observations, what would happen if we took a particular action? To learn these cost-benefit tradeoffs associated with the expert's actions, we integrate counterfactual reasoning into batch inverse reinforcement learning. This offers a principled way of defining reward functions and explaining expert behavior, and also satisfies the constraints of real-world decision-making -- where active experimentation is often impossible (e.g. in healthcare). Additionally, by estimating the effects of different actions, counterfactuals readily tackle the off-policy nature of policy evaluation in the batch setting, and can naturally accommodate settings where the expert policies depend on histories of observations rather than just current states. Through illustrative experiments in both real and simulated medical environments, we highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源