论文标题
密度和半透明气体中电离部分的示踪剂:I。大规模星体化学模型网格的自动开发
Tracers of the ionization fraction in dense and translucent gas: I. Automated exploitation of massive astrochemical model grids
论文作者
论文摘要
从控制气体与磁场的耦合到允许驱动星际化学的快速离子中性反应,电离馏分在中性星际介质的物理和化学中起关键作用。对电离部分的大多数估计都取决于氘代物种,例如DCO+,其检测仅限于密集的岩心,代表了它们所属于的巨型分子云的一小部分。随着大型视野高光谱地图的可用,可以找到新的示踪剂。我们根据天体化学模型网格寻找电离部分的最佳观察示踪剂。我们建立模型的网格,这些模型随机采样大量的物理条件(不可观察的数量,例如气体密度,温度等),并计算相应的可观察物(线强度,列密度)和电离分数。我们通过训练一个随机的森林模型来估计每个潜在示踪剂的预测能力,以根据这些模型网格来预测该示踪剂的电离分数。在半透明的培养基和冷致密培养基条件下,可以发现几位具有很好的预测能力的可观察到的示踪剂。发现与传统的DCO+/HCO+比率相比,在冷致密条件下的几个示踪剂更高,更广泛地适用。我们还提供了更简单的分析拟合,用于估算最佳示踪剂的电离分数,并估算相关的不确定性。我们讨论本研究的局限性,并在两种情况下选择一些推荐的示踪剂。此处介绍的方法非常笼统,可以应用于任何其他类型的模型(PDR模型,时间依赖性化学模型等)的任何其他关注量(宇宙射线通量,元素丰度等)的测量。 (简略)
The ionization fraction plays a key role in the physics and chemistry of the neutral interstellar medium, from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry. Most estimations of the ionization fraction have relied on deuterated species such as DCO+, whose detection is limited to dense cores representing an extremely small fraction of the volume of the giant molecular clouds they are part of. As large field-of-view hyperspectral maps become available, new tracers may be found. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models. We build grids of models that sample randomly a large space of physical conditions (unobservable quantities such as gas density, temperature, etc.) and compute the corresponding observables (line intensities, column densities) and the ionization fraction. We estimate the predictive power of each potential tracer by training a Random Forest model to predict the ionization fraction from that tracer, based on these model grids. In both translucent medium and cold dense medium conditions, several observable tracers with very good predictive power for the ionization fraction are found. Several tracers in cold dense medium conditions are found to be better and more widely applicable than the traditional DCO+/HCO+ ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended tracers in both types of conditions. The method presented here is very general and can be applied to the measurement of any other quantity of interest (cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.). (abridged)