论文标题

MIMO系统中系统孔,系统二元组和光谱零件的交织特性

Interlacing properties of system-poles, system-zeros and spectral-zeros in MIMO systems

论文作者

Kumar, Sandeep, Belur, Madhu N.

论文摘要

SISO被动系统只有一种内存/存储元件(仅电感或仅电容性)具有真实的电线杆和零,然后还有零间隔杆(ZIP)的零。由于系统零的概念的各种定义,并且由于论文中描述的其他原因,涉及ZIP的结果尚未扩展到MIMO系统。本文制定了MIMO系统也将隔离杆和零交错的条件。 接下来,本文的重点是系统的“光谱零”概念,该概念在各种情况下都经过了良好的研究:例如,光谱分解,耗散系统的最佳充电/放电,甚至模型订单减少。我们制定了MIMO系统的光谱零是真实的条件,并且进一步保证了系统 - 零件,光谱零和极线的条件均已隔开。 证明中使用的技术涉及代数riccati方程(AS)和汉密尔顿矩阵中的新结果,这些结果有助于制定正式平衡的新概念,以及与现有的正面平衡概念的相互关系;我们还将正面真实的奇异值与最大值的特征值联系起来是拟议的“准平衡”形式中的解决方案。

SISO passive systems with just one type of memory/storage element (either only inductive or only capacitative) are known to have real poles and zeros, and further, with the zeros interlacing poles (ZIP). Due to a variety of definitions of the notion of a system zero, and due to other reasons described in the paper, results involving ZIP have not been extended to MIMO systems. This paper formulates conditions under which MIMO systems too have interlaced poles and zeros. This paper next focusses on the notion of a `spectral zero' of a system, which has been well-studied in various contexts: for example, spectral factorization, optimal charging/discharging of a dissipative system, and even model order reduction. We formulate conditions under which the spectral zeros of a MIMO system are real, and further, conditions that guarantee that the system-zeros, spectral zeros, and the poles are all interlaced. The techniques used in the proofs involve new results in Algebraic Riccati equations (ARE) and Hamiltonian matrices, and these results help in formulating new notions of positive-real balancing, and inter-relations with the existing notion of positive-real balancing; we also relate the positive-real singular values with the eigenvalues of the extremal ARE solutions in the proposed `quasi-balanced' forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源