论文标题

与平行推理的双氧和温度发光学习传感器

Dual oxygen and temperature luminescence learning sensor with parallel inference

论文作者

Venturini, Francesca, Michelucci, Umberto, Baumgartner, Michael

论文摘要

一种众所周知的氧光学测量方法是基于分子氧对发光的淬火。这种测量方法的主要挑战是开发准确的数学模型。通常,通过使用近似经验模型,这些效应是参数化的临时模型。如果需要提取多个参数(例如氧气浓度和温度),尤其是在交叉干扰时,复杂性会进一步增加。常见的解决方案是分别测量不同的参数,例如使用不同的传感器,并校正交叉干扰。在这项工作中,我们提出了一种基于平行推断的学习传感器的新方法。我们展示了如何从单个光学测量值中提取多个参数,而无需任何先验数学模型,并且具有前所未有的精度。我们还提出了一个新的指标来表征基于神经网络的传感器的性能,即错误的准确性。所提出的方法不仅限于氧气和温度传感。每当基础数学模型都不知道或太复杂时,它可以应用于多个发光体的传感。

A well-known approach to the optical measure of oxygen is based on the quenching of luminescence by molecular oxygen. The main challenge for this measuring method is the development of an accurate mathematical model. Typically, this is overcome by using an approximate empirical model where these effects are parametrized ad hoc. The complexity increases further if multiple parameters (like oxygen concentration and temperature) need to be extracted, particularly if they are cross interfering. The common solution is to measure the different parameters separately, for example, with different sensors, and correct for the cross interferences. In this work, we propose a new approach based on a learning sensor with parallel inference. We show how it is possible to extract multiple parameters from a single set of optical measurements without the need for any a priori mathematical model, and with unprecedented accuracy. We also propose a new metrics to characterize the performance of neural network based sensors, the Error Limited Accuracy. The proposed approach is not limited to oxygen and temperture sensing. It can be applied to the sensing with multiple luminophores, whenever the underlying mathematical model is not known or too complex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源