论文标题

可压缩流的哈密顿相互作用粒子系统

A Hamiltonian interacting particle system for compressible flow

论文作者

Hochgerner, Simon

论文摘要

可压缩流体包裹的能量分解为慢速(确定性)和快速(随机)组件的分解被解释为随机的哈密顿相互作用粒子系统(HIPS)。结果表明,与平均场限制相关的McKean-Vlasov方程产生的粘液式粘度依赖性粘度。毛细力也可以通过这种方法来处理。由于汉密尔顿结构,平均场系统满足了沿随机拉格朗日路径的开尔文循环定理。

The decomposition of the energy of a compressible fluid parcel into slow (deterministic) and fast (stochastic) components is interpreted as a stochastic Hamiltonian interacting particle system (HIPS). It is shown that the McKean-Vlasov equation associated to the mean field limit yields the barotropic Navier-Stokes equation with density dependent viscosity. Capillary forces can also be treated by this approach. Due to the Hamiltonian structure the mean field system satisfies a Kelvin circulation theorem along stochastic Lagrangian paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源