论文标题
Feynman积分的顺序不连续性和单模组
Sequential Discontinuities of Feynman Integrals and the Monodromy Group
论文作者
论文摘要
我们概括了散射幅度的不连续性和切割图的不连续性,以涵盖任意动量通道中的顺序不连续性(不连续性的不连续性)。新的关系是使用时间订购的扰动理论得出的,并在所有切割动量通道都可以同时访问的相位点处。作为本分析的一部分,我们解释了如何计算单个单粒的顺序不连续性,并探讨了单型组在表征Feynman积分的分析特性中的使用。我们在各个循环订单中对我们的新公式进行了许多新公式的交叉检查。
We generalize the relation between discontinuities of scattering amplitudes and cut diagrams to cover sequential discontinuities (discontinuities of discontinuities) in arbitrary momentum channels. The new relations are derived using time-ordered perturbation theory, and hold at phase-space points where all cut momentum channels are simultaneously accessible. As part of this analysis, we explain how to compute sequential discontinuities as monodromies and explore the use of the monodromy group in characterizing the analytic properties of Feynman integrals. We carry out a number of cross-checks of our new formulas in polylogarithmic examples, in some cases to all loop orders.