论文标题

使用集合方差的自适应激光雷达采样和深度完成

Adaptive LiDAR Sampling and Depth Completion using Ensemble Variance

论文作者

Gofer, Eyal, Praisler, Shachar, Gilboa, Guy

论文摘要

这项工作考虑了深度完成的问题,无论是否有图像数据,算法都可以测量规定的有限像素的深度。算法挑战是在战略和动态上选择像素位置,以最大程度地减少整体深度估计误差。这种设置是在白天或夜间深度完成的,可用于使用可编程LiDAR的自动驾驶汽车。我们的方法使用一个预测指标的集合来定义像素上的采样概率。这种概率与集合成员的预测的方差成正比,因此突出了难以预测的像素。通过在几个预测阶段进行进程,我们有效地减少了相似像素的冗余采样。我们的基于合奏的方法可以使用任何深度完成学习算法(例如最先进的神经网络)被视为黑匣子。特别是,我们还提出了一种简单有效的随机基于森林的算法,并在设计中同样使用其内部合奏。我们使用MA等人的神经网络算法在Kitti数据集上进行实验。以及我们以森林为基础的学习者来实施我们的方法。两种实施的准确性都超过了艺术的状态。与随机或网格采样模式相比,我们的方法允许在达到相同精度所需的测量数量中减少4-10倍。

This work considers the problem of depth completion, with or without image data, where an algorithm may measure the depth of a prescribed limited number of pixels. The algorithmic challenge is to choose pixel positions strategically and dynamically to maximally reduce overall depth estimation error. This setting is realized in daytime or nighttime depth completion for autonomous vehicles with a programmable LiDAR. Our method uses an ensemble of predictors to define a sampling probability over pixels. This probability is proportional to the variance of the predictions of ensemble members, thus highlighting pixels that are difficult to predict. By additionally proceeding in several prediction phases, we effectively reduce redundant sampling of similar pixels. Our ensemble-based method may be implemented using any depth-completion learning algorithm, such as a state-of-the-art neural network, treated as a black box. In particular, we also present a simple and effective Random Forest-based algorithm, and similarly use its internal ensemble in our design. We conduct experiments on the KITTI dataset, using the neural network algorithm of Ma et al. and our Random Forest based learner for implementing our method. The accuracy of both implementations exceeds the state of the art. Compared with a random or grid sampling pattern, our method allows a reduction by a factor of 4-10 in the number of measurements required to attain the same accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源