论文标题

通过强化学习在V2X网络中实现的许可区块链,拜占庭式易于耐受性共识

Byzantine-Fault-Tolerant Consensus via Reinforcement Learning for Permissioned Blockchain Implemented in a V2X Network

论文作者

Kim, Seungmo, Ibrahim, Ahmed S.

论文摘要

区块链一直构成用于可信数据交换的各种类型的车辆到所有设施(V2X)网络的中心部分。最近,由于其改善了不同组织的可伸缩性和各种需求,因此获得了允许的区块链特别关注。允许区块链的一个代表性示例是HyperLeDger Fabric(“织物”)。由于其唯一的执行顺序过程,客户至少需要选择最佳数量的同行。本文目标要解决的有趣问题是同行数量的权衡:数量太大会降低可伸缩性,而数量太小会使网络容易受到故障节点的影响。由于节点的移动性,在V2X网络中,此优化问题尤其具有挑战性:必须执行交易,并且必须在车辆离开网络之前实施关联的块。为此,本文提出了一种基于增强学习(RL)的最佳同行选择机制,以使织物赋权的V2X网络因动态性而不受动态性而不受动态性的影响。我们将RL建模为上下文多臂强盗(MAB)问题。结果证明了拟议方案的表现。

Blockchain has been forming the central piece of various types of vehicle-to-everything (V2X) network for trusted data exchange. Recently, permissioned blockchains garner particular attention thanks to their improved scalability and diverse needs from different organizations. One representative example of permissioned blockchain is Hyperledger Fabric ("Fabric"). Due to its unique execute-order procedure, there is a critical need for a client to select an optimal number of peers. The interesting problem that this paper targets to address is the tradeoff in the number of peers: a too large number will degrade scalability while a too small number will make the network vulnerable to faulty nodes. This optimization issue gets especially challenging in V2X networks due to mobility of nodes: a transaction must be executed and the associated block must be committed before the vehicle leaves a network. To this end, this paper proposes an optimal peers selection mechanism based on reinforcement learning (RL) to keep a Fabric-empowered V2X network impervious to dynamicity due to mobility. We model the RL as a contextual multi-armed bandit (MAB) problem. The results demonstrate the outperformance of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源