论文标题

YNU-HPCC在Semeval-2020任务8:使用平行通道模型进行审阅分析

YNU-HPCC at SemEval-2020 Task 8: Using a Parallel-Channel Model for Memotion Analysis

论文作者

Yuan, Li, Wang, Jin, Zhang, Xuejie

论文摘要

近年来,在社交媒体平台(例如Facebook,Instagram和Twitter)上,互联网模因无处不在,已成为引起极大兴趣的话题。但是,对模因的分类和识别比社交文本的分类和识别要复杂得多,因为它涉及视觉提示和语言理解。为了解决这个问题,本文提出了一个并行通道模型,以处理模因中的文本和视觉信息,然后分析模因的情感极性。在识别和分类模因的共同任务中,我们根据社交媒体上的语言行为进行预处理。然后,我们调整并微调来自变形金刚(BERT)的双向编码器表示,并使用两种类型的卷积神经网络模型(CNN)从图片中提取特征。我们应用了一个组合模型,该模型将Bilstm,BigRU和注意力模型组合在一起,以执行跨域建议挖掘。正式发布的结果表明,我们的系统的性能优于基线算法。我们的团队在子任务A(情感分类)中赢得了第19名。本文的代码可在以下网址提供:https://github.com/yuanli95/semveal20202020-task8-emotion-Analysis。

In recent years, the growing ubiquity of Internet memes on social media platforms, such as Facebook, Instagram, and Twitter, has become a topic of immense interest. However, the classification and recognition of memes is much more complicated than that of social text since it involves visual cues and language understanding. To address this issue, this paper proposed a parallel-channel model to process the textual and visual information in memes and then analyze the sentiment polarity of memes. In the shared task of identifying and categorizing memes, we preprocess the dataset according to the language behaviors on social media. Then, we adapt and fine-tune the Bidirectional Encoder Representations from Transformers (BERT), and two types of convolutional neural network models (CNNs) were used to extract the features from the pictures. We applied an ensemble model that combined the BiLSTM, BIGRU, and Attention models to perform cross domain suggestion mining. The officially released results show that our system performs better than the baseline algorithm. Our team won nineteenth place in subtask A (Sentiment Classification). The code of this paper is availabled at : https://github.com/YuanLi95/Semveal2020-Task8-emotion-analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源