论文标题
分散风险和不对称尾巴风险的投资组合优化
Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk
论文作者
论文摘要
在本文中,我们提出了一个市场模型,其回报率遵循由多变量正态分布和钢化稳定稳定下属的混合物定义的多元正常恢复稳定分布。该分布能够捕获两个风格化的事实:脂肪尾和不对称性,这些事实已被经验观察到资产回报分布。在新的市场模型上,我们讨论了一种新的投资组合优化方法,这是Markowitz的均值优化的扩展。新的优化方法不仅考虑了奖励和分散,还考虑不对称。在三维奖励,分散和不对称的三维空间上,有效的边界也延伸到弯曲的表面。我们还提出了一种新的绩效指标,这是Sharpe比率的扩展。此外,我们为投资组合经理在投资组合结构中使用的两种重要措施提供了封闭形式的解决方案:边际价值风险(VAR)和边缘条件VAR(CVAR)。我们使用包括道琼斯琼斯工业平均水平的股票说明了所提出的模型。首先,执行新的投资组合优化,然后演示如何将边缘VAR和边缘CVAR用于模型下的投资组合优化。基于本文提供的经验证据,我们的框架为投资组合风险管理提供了现实的投资组合优化和可处理的方法。
In this paper, we propose a market model with returns assumed to follow a multivariate normal tempered stable distribution defined by a mixture of the multivariate normal distribution and the tempered stable subordinator. This distribution is able to capture two stylized facts: fat-tails and asymmetry, that have been empirically observed for asset return distributions. On the new market model, we discuss a new portfolio optimization method, which is an extension of Markowitz's mean-variance optimization. The new optimization method considers not only reward and dispersion but also asymmetry. The efficient frontier is also extended to a curved surface on three-dimensional space of reward, dispersion, and asymmetry. We also propose a new performance measure which is an extension of the Sharpe Ratio. Moreover, we derive closed-form solutions for two important measures used by portfolio managers in portfolio construction: the marginal Value-at-Risk (VaR) and the marginal Conditional VaR (CVaR). We illustrate the proposed model using stocks comprising the Dow Jones Industrial Average. First, perform the new portfolio optimization and then demonstrating how the marginal VaR and marginal CVaR can be used for portfolio optimization under the model. Based on the empirical evidence presented in this paper, our framework offers realistic portfolio optimization and tractable methods for portfolio risk management.