论文标题
具有功能数据的多输出高斯流程:一项关于沿海洪水危害评估的研究
Multioutput Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
论文作者
论文摘要
替代模型通常用于替代昂贵的复杂沿海代码以实现大量计算节省。在许多模型中,水文学强迫条件(输入)或洪水事件(输出)通过标量表示方便地参数化,忽略了输入实际上是时间序列,并且在空间内泛滥。对于复杂的沿海系统,这两个事实对于洪水预测至关重要。我们的目标是建立一个替代模型,该模型解释了时间变化的投入,并提供有关空间变化内陆洪水的信息。我们基于可分离的内核引入了多输出高斯过程模型,该过程将功能输入和空间位置相关联。有效的实现考虑张量结构化计算或稀疏变量近似值。在几个实验中,我们证明了模型在学习地图和推断未观察的地图中的多功能性,数值显示了预测的收敛,并且随着学习地图的数量的增加。我们在沿海洪水预测应用中评估我们的框架。在计算时间内使用较小的误差值获得了预测,与短期预测要求高度兼容(与流体动力模拟器所要求的天数相比,在几分钟的时间内)获得了预测。我们得出的结论是,我们的框架是预测和早期制作系统的有前途的方法。
Surrogate models are often used to replace costly-to-evaluate complex coastal codes to achieve substantial computational savings. In many of those models, the hydrometeorological forcing conditions (inputs) or flood events (outputs) are conveniently parameterized by scalar representations, neglecting that the inputs are actually time series and that floods propagate spatially inland. Both facts are crucial in flood prediction for complex coastal systems. Our aim is to establish a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding. We introduce a multioutput Gaussian process model based on a separable kernel that correlates both functional inputs and spatial locations. Efficient implementations consider tensor-structured computations or sparse-variational approximations. In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps, numerically showing the convergence of predictions as the number of learning maps increases. We assess our framework in a coastal flood prediction application. Predictions are obtained with small error values within computation time highly compatible with short-term forecast requirements (on the order of minutes compared to the days required by hydrodynamic simulators). We conclude that our framework is a promising approach for forecast and early-warning systems.