论文标题

Trajgail:使用生成对抗性模仿学习生成城市车辆轨迹

TrajGAIL: Generating Urban Vehicle Trajectories using Generative Adversarial Imitation Learning

论文作者

Choi, Seongjin, Kim, Jiwon, Yeo, Hwasoo

论文摘要

最近,在道路网络中收集了大量的城市轨迹数据。许多研究使用机器学习算法来分析车辆轨迹中的模式,以预测单个旅行者的位置序列。与以前使用歧视性建模方法的研究不同,该研究提出了一种生成建模方法,以学习城市车辆轨迹数据的潜在分布。城市车辆轨迹的生成模型可以通过学习训练数据的潜在分布来更好地从训练数据中概括,从而产生与实际车辆相似的合成车辆轨迹,并且观察到有限。合成轨迹可以在使用位置数据中为数据稀疏性或数据隐私问题提供解决方案。这项研究提案,这是城市车辆轨迹生成的生成对抗性模仿学习框架。在Trajgail中,在可观察到的马尔可夫决策过程中,观察到的轨迹中的学习位置序列被称为模仿学习问题。该模型由生成对抗框架训练,该框架使用对抗性歧视器的奖励功能。使用仿真和现实世界数据集测试了该模型,结果表明,与序列建模中的现有模型相比,所提出的模型获得了显着的性能增长。

Recently, an abundant amount of urban vehicle trajectory data has been collected in road networks. Many studies have used machine learning algorithms to analyze patterns in vehicle trajectories to predict location sequences of individual travelers. Unlike the previous studies that used a discriminative modeling approach, this research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data. A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data and, thus, produce synthetic vehicle trajectories similar to real vehicle trajectories with limited observations. Synthetic trajectories can provide solutions to data sparsity or data privacy issues in using location data. This research proposesTrajGAIL, a generative adversarial imitation learning framework for the urban vehicle trajectory generation. In TrajGAIL, learning location sequences in observed trajectories is formulated as an imitation learning problem in a partially observable Markov decision process. The model is trained by the generative adversarial framework, which uses the reward function from the adversarial discriminator. The model is tested with both simulation and real-world datasets, and the results show that the proposed model obtained significant performance gains compared to existing models in sequence modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源