论文标题

通过在动态流和同时通信模型中绘制图形跨度

Graph Spanners by Sketching in Dynamic Streams and the Simultaneous Communication Model

论文作者

Filtser, Arnold, Kapralov, Michael, Nouri, Navid

论文摘要

Graph Sketching是AHN,Guha和McGregor'12在动态图流中的连接性的开创性工作中引入的一种强大技术,此后在文献中引起了很大的关注,并导致了许​​多基本的动态流算法,例如连通性,连通性,切割和频谱和频谱和频谱和匹配者和匹配。然而,有趣的是,近似图的最短路径度量的草图和动态流的复杂性仍然远远不够众所周知。除了直接的$ k $ pass实施古典扳手构造(最近改善到$ \ lfloor \ frac k2 \ rfloor+1 $ 1 $ - fernandez,woodruff和yasuda'20)是艺术的状况Kapralov和Woodruff'14。特别是,没有一个通过单个通过算法,并且可以打开延伸和空间复杂性之间的最佳权衡。 在本文中,我们介绍了几种新的图形草图技术,以近似输入图的最短路径度量。我们给出了第一个用于构造图形跨度的算法的绘制算法:我们显示如何获得$ \ widetilde {o}(n^{\ frac23})$ - 使用$ \ widetilde {o}(o}(n)$,以及一般而言$ \ widetilde {o}(n^{\ frac23(1-α)})$ - 使用$ \ widetilde {o}(n^{1+α})$ space in [0,1] $中的每个$α\ in [0,1] $,我们认为可能是最佳最佳的交易。我们还为任何数量的通行证提供了新的Spanner构造算法,同时改善了此问题的所有先前工作。最后,我们研究同时通信模型,并提出了每个播放器信息较低的第一个协议。

Graph sketching is a powerful technique introduced by the seminal work of Ahn, Guha and McGregor'12 on connectivity in dynamic graph streams that has enjoyed considerable attention in the literature since then, and has led to near optimal dynamic streaming algorithms for many fundamental problems such as connectivity, cut and spectral sparsifiers and matchings. Interestingly, however, the sketching and dynamic streaming complexity of approximating the shortest path metric of a graph is still far from well-understood. Besides a direct $k$-pass implementation of classical spanner constructions (recently improved to $\lfloor\frac k2\rfloor+1$-passes by Fernandez, Woodruff and Yasuda'20) the state of the art amounts to a $O(\log k)$-pass algorithm of Ahn, Guha and McGregor'12, and a $2$-pass algorithm of Kapralov and Woodruff'14. In particular, no single pass algorithm is known, and the optimal tradeoff between the number of passes, stretch and space complexity is open. In this paper we introduce several new graph sketching techniques for approximating the shortest path metric of the input graph. We give the first {\em single pass} sketching algorithm for constructing graph spanners: we show how to obtain a $\widetilde{O}(n^{\frac23})$-spanner using $\widetilde{O}(n)$ space, and in general a $\widetilde{O}(n^{\frac23(1-α)})$-spanner using $\widetilde{O}(n^{1+α})$ space for every $α\in [0, 1]$, a tradeoff that we think may be close optimal. We also give new spanner construction algorithms for any number of passes, simultaneously improving upon all prior work on this problem. Finally, we study the simultaneous communication model and propose the first protocols with low per player information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源