论文标题
实验室演示在反射光中成像外行星的空间线性暗场控制
Laboratory Demonstration of Spatial Linear Dark Field Control For Imaging Extrasolar Planets in Reflected Light
论文作者
论文摘要
反射光的成像行星是未来的NASA任务和ELT的重点,需要先进的波前控制,以维持恒星光环的深度,时间相关的零 - 即一个衍射光束宽度。使用AMES CORONAGRAPH实验测试,我们提出了接近原始对比的空间线性暗场控制(LDFC)的第一个实验室测试($ \ sim $ \ sim $ 5 $ \ times $ 10 $ \ times $ 10 $^{ - 7} $),分离(1.5---5.2 $λ$/d)与Sund-corland of Sungiagr Planets a Imparaty corron corrons of Space-corrand of Space-corrand of Space-corrand of Space-corranp ww fffirapl ww w。低质量恒星周围具有未来的30m级望远镜的射季。在四个独立的实验和一系列不同的扰动中,LDFC在很大程度上恢复了(在1.2--1.7的一倍之内),并保持了一个暗孔,其对比度被相误差通过数量级降解。我们对经典斑点无效的实施需要2--5个迭代倍数和20-50 dm命令,以达到空间LDFC获得的对比度。我们的结果为保持黑洞的前进提供了一个有希望的途径,而无需依赖DM探测和低流量策略,这可能会改善高对比度成像工具的占空比,增加斑点的时间相关性,从而增强我们在未来二十年中图像真实太阳能系统类似物的能力。
Imaging planets in reflected light, a key focus of future NASA missions and ELTs, requires advanced wavefront control to maintain a deep, temporally correlated null of stellar halo -- i.e. a dark hole -- at just several diffraction beam widths. Using the Ames Coronagraph Experiment testbed, we present the first laboratory tests of Spatial Linear Dark Field Control (LDFC) approaching raw contrasts ($\sim$ 5$\times$10$^{-7}$) and separations (1.5--5.2 $λ$/D) needed to image jovian planets around Sun-like stars with space-borne coronagraphs like WFIRST-CGI and image exo-Earths around low-mass stars with future ground-based 30m class telescopes. In four separate experiments and for a range of different perturbations, LDFC largely restores (to within a factor of 1.2--1.7) and maintains a dark hole whose contrast is degraded by phase errors by an order of magnitude. Our implementation of classical speckle nulling requires a factor of 2--5 more iterations and 20--50 DM commands to reach contrasts obtained by spatial LDFC. Our results provide a promising path forward to maintaining dark holes without relying on DM probing and in the low-flux regime, which may improve the duty cycle of high-contrast imaging instruments, increase the temporal correlation of speckles, and thus enhance our ability to image true solar system analogues in the next two decades.