论文标题

图像恢复的矩阵完成的正则深度矩阵分解模型

A regularized deep matrix factorized model of matrix completion for image restoration

论文作者

Li, Zhemin, Xu, Zhi-Qin John, Luo, Tao, Wang, Hongxia

论文摘要

使用矩阵完成来进行图像恢复是一种重要方法。以前的大多数关于矩阵完成的作品通过对恢复的矩阵施加明确的约束,例如核定标准的约束或限制矩阵分解成分的维度,将其重点放在低级属性上。最近,理论工作表明,深线性神经网络对矩阵完成中的低级有隐性的偏见。但是,低级不足以反映自然图像的内在特征。因此,仅具有低级约束的算法不足以很好地执行图像恢复。在这项工作中,我们提出了一个用于图像恢复的正规深矩阵分解(RDMF)模型,该模型利用了深神经网络的低等级的隐式偏差和总变化的明确偏见。我们通过广泛的实验证明了我们的RDMF模型的有效性,其中我们的方法超过了常见示例中最先进的模型,尤其是对于很少的观察结果恢复而言。我们的工作阐明了一个更通用的框架,该框架通过将深度学习的隐式偏见与明确的正则化结合在一起来解决其他反问题。

It has been an important approach of using matrix completion to perform image restoration. Most previous works on matrix completion focus on the low-rank property by imposing explicit constraints on the recovered matrix, such as the constraint of the nuclear norm or limiting the dimension of the matrix factorization component. Recently, theoretical works suggest that deep linear neural network has an implicit bias towards low rank on matrix completion. However, low rank is not adequate to reflect the intrinsic characteristics of a natural image. Thus, algorithms with only the constraint of low rank are insufficient to perform image restoration well. In this work, we propose a Regularized Deep Matrix Factorized (RDMF) model for image restoration, which utilizes the implicit bias of the low rank of deep neural networks and the explicit bias of total variation. We demonstrate the effectiveness of our RDMF model with extensive experiments, in which our method surpasses the state of art models in common examples, especially for the restoration from very few observations. Our work sheds light on a more general framework for solving other inverse problems by combining the implicit bias of deep learning with explicit regularization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源