论文标题
大均匀性超图的棕色 - 埃尔德s-sós猜想
The Brown-Erdős-Sós Conjecture for hypergraphs of large uniformity
论文作者
论文摘要
我们证明了众所周知的Brown-erdős-Sós的猜想,对以下形式具有较大均匀性的超图:任何密集的线性$ r $ r $ -graph $ g $具有$ k $ g $的$ k $边缘,最多涉及$(r-2)k+3 $ dertices,只要给出了$ g $ $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $和norte $ g $和vertice的数字和vertice的数字, $ k $。
We prove the well-known Brown-Erdős-Sós Conjecture for hypergraphs of large uniformity in the following form: any dense linear $r$-graph $G$ has $k$ edges spanning at most $(r-2)k+3$ vertices, provided the uniformity $r$ of $G$ is large enough given the linear density of $G$, and the number of vertices of $G$ is large enough given $r$ and $k$.