论文标题

高维黑洞的一般参数化及其在爱因斯坦 - 洛德洛克理论中的应用

General parametrization of higher-dimensional black holes and its application to Einstein-Lovelock theory

论文作者

Konoplya, Roman A., Pappas, Thomas D., Stuchlík, Zdenek

论文摘要

在这里,我们在任意重力理论中开发了球形对称和渐近平坦的黑洞空间的一般参数化。参数化在精神上与参数化后纽顿(PPN)近似相似,但在事件范围外的整个空间中有效,包括近乎地平线。这是根据Rezzolla和Zhidenko [Phys.Rev.D 90 8,084009(2014)]建议的紧凑型径向坐标的持续分数扩展方法的概括。作为我们高维参数化的第一个应用,我们在各个维度上具有爱因斯坦 - 洛夫洛克理论的近似黑洞溶液。这允许人们以非常紧凑的分析形式写下许多参数(在较高曲率项前的耦合常数),这仅取决于参数化的几个参数。即使在持续分数膨胀的一阶,也可以通过计算可观察到的数量(例如黑洞的准模式)来确认,近似度量的分数偏离了确切的(但非常繁琐的)表达式。

Here we have developed the general parametrization for spherically symmetric and asymptotically flat black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the parametrized post-Newtonian (PPN) approximation, but valid in the whole space outside the event horizon, including the near horizon region. This generalizes the continued-fraction expansion method in terms of a compact radial coordinate suggested by Rezzolla and Zhidenko [Phys.Rev.D 90 8, 084009 (2014)] for the four-dimensional case. As the first application of our higher-dimensional parametrization we have approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one to write down the black-hole solution which depends on many parameters (coupling constants in front of higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed here by computation of observable quantities, such as quasinormal modes of the black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源