论文标题

$ hp^2 $ -Bundle $ s^4 $与非平凡$ \ hat {a} $ - 属

An $HP^2$-bundle over $S^4$ with nontrivial $\hat{A}$-genus

论文作者

Krannich, Manuel, Kupers, Alexander, Randal-Williams, Oscar

论文摘要

我们解释了平滑的$ hp^2 $ -Bundle在$ s^4 $上,其总空间具有非平凡的$ \ hat {a} $ - 属。结合回到希钦(Hitchin)的论点,这回答了一个奇克(Schick)的问题,并意味着在封闭的歧管上积极截面曲率的riemannian指标的空间可以具有非平凡的较高理性同型组。

We explain the existence of a smooth $HP^2$-bundle over $S^4$ whose total space has nontrivial $\hat{A}$-genus. Combined with an argument going back to Hitchin, this answers a question of Schick and implies that the space of Riemannian metrics of positive sectional curvature on a closed manifold can have nontrivial higher rational homotopy groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源