论文标题

具有不可知论的噪声的对抗性稳健的适当学习的复杂性适当地学习

The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise

论文作者

Diakonikolas, Ilias, Kane, Daniel M., Manurangsi, Pasin

论文摘要

我们研究了独立于分布的不可抗拒的PAC模型中对抗性鲁棒的适当学习的计算复杂性,重点是$ l_p $扰动。我们给出了一种有效的计算学习算法,并为此问题提供了几乎匹配的计算硬度结果。我们发现的一个有趣的含义是,$ l _ {\ infty} $扰动情况在计算上比$ 2 \ leq p <\ infty $要难。

We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent agnostic PAC model, with a focus on $L_p$ perturbations. We give a computationally efficient learning algorithm and a nearly matching computational hardness result for this problem. An interesting implication of our findings is that the $L_{\infty}$ perturbations case is provably computationally harder than the case $2 \leq p < \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源