论文标题
使用机器学习的非线性分散波快速分辨预测
Rapid Phase-Resolved Prediction of Nonlinear Dispersive Waves Using Machine Learning
论文作者
论文摘要
在本文中,我们表明,经过修订的卷积复发性神经网络(CRNN)可以通过数量级减少,这是非线性色散波场时空域中波的相位预测波的相位预测所需的时间。预测此类波的问题遇到了两个主要挑战,到目前为止,实时或更快地妨碍了分析或直接的计算解决方案:(i)重建问题,也就是说,一个人可以从可测量的波幅度数据中计算出一个人的状态(波部的状态)(波组件,非线性耦合等方程式),以及如何构建此操作,以及(II)的构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建,以及如何构建。即将到来的胭脂浪潮及时。在这里,我们证明,基于域中波高数据的时间历史的时空贴片,可以通过先进的机器学习技术立即克服这两个挑战。具体而言,作为一个基准,我们考虑了控制弱非线性表面重力波的演变的方程,例如在海面上传播的方程。对于此处考虑的海洋表面波的情况,我们证明了所提出的方法在保持高精度的同时,可以使相位分辨的预测比数字整合管理方程的速度要快两个数量级以上。
In this paper, we show that a revised convolutional recurrent neural network (CRNN) can decrease, by orders of magnitude, the time needed for the phase-resolved prediction of waves in a spatiotemporal domain of a nonlinear dispersive wave field. The problem of predicting such waves suffers from two major challenges that have so far hindered analytical or direct computational solutions in real time or faster: (i) the reconstruction problem, that is, how one can calculate from measurable wave amplitude data the state of the wave field (wave components, nonlinear couplings, etc.), and (ii) if such a reconstruction is in hand, how to integrate equations fast enough to be able to predict an upcoming rouge wave in a timely manner. Here, we demonstrate that these two challenges can be overcome at once through advanced machine learning techniques based on spatiotemporal patches of the time history of wave height data in the domain. Specifically, as a benchmark here we consider equations that govern the evolution of weakly nonlinear surface gravity waves such as those propagating on the surface of the oceans. For the case of oceanic surface waves considered here, we demonstrate that the proposed methodology, while maintaining a high accuracy, can make phase-resolved predictions more than two orders of magnitude faster than numerically integrating governing equations.