论文标题

基于信息网络的异类跨域保险建议系统,用于冷启动用户

A Heterogeneous Information Network based Cross Domain Insurance Recommendation System for Cold Start Users

论文作者

Bi, Ye, Song, Liqiang, Yao, Mengqiu, Wu, Zhenyu, Wang, Jianming, Xiao, Jing

论文摘要

互联网正在改变世界,适应互联网销售的趋势将为传统保险公司带来收入。在线保险仍处于开发的早期阶段,那里冷启动问题(潜在客户)是最大的挑战之一。在传统的电子商务领域中,已经研究了几种跨域建议(CDR)方法,以根据其他域中的偏好来推断冷启动用户的偏好。但是,由于特定域的特定属性,这些CDR方法无法直接应用于保险域。在本文中,我们为冷启动用户提出了一个新颖的框架,称为基于信息网络的跨域保险建议(HCDIR)系统。具体来说,我们首先尝试在源和目标域中学习更有效的用户和项目潜在功能。在源域中,我们采用封闭式复发单元(GRU)来模块用户动态兴趣。在目标域中,鉴于保险产品的复杂性和数据稀疏问题,我们基于Pingan Jinginganjia的数据来构建保险异构信息网络(IHIN),IHIN将用户,代理商,保险产品和保险产品属性联系在一起,从而为我们提供了更丰富的信息。然后,我们采用三级(关系,节点和语义)注意聚合来获得用户和保险产品表示。在获得重叠用户的潜在特征后,多层Perceptron(MLP)学习了两个域之间的特征映射。我们在Jinguanjia数据集上应用HCDIR,并显示HCDIR的表现明显优于最先进的解决方案。

Internet is changing the world, adapting to the trend of internet sales will bring revenue to traditional insurance companies. Online insurance is still in its early stages of development, where cold start problem (prospective customer) is one of the greatest challenges. In traditional e-commerce field, several cross-domain recommendation (CDR) methods have been studied to infer preferences of cold start users based on their preferences in other domains. However, these CDR methods could not be applied to insurance domain directly due to the domain specific properties. In this paper, we propose a novel framework called a Heterogeneous information network based Cross Domain Insurance Recommendation (HCDIR) system for cold start users. Specifically, we first try to learn more effective user and item latent features in both source and target domains. In source domain, we employ gated recurrent unit (GRU) to module user dynamic interests. In target domain, given the complexity of insurance products and the data sparsity problem, we construct an insurance heterogeneous information network (IHIN) based on data from PingAn Jinguanjia, the IHIN connects users, agents, insurance products and insurance product properties together, giving us richer information. Then we employ three-level (relational, node, and semantic) attention aggregations to get user and insurance product representations. After obtaining latent features of overlapping users, a feature mapping between the two domains is learned by multi-layer perceptron (MLP). We apply HCDIR on Jinguanjia dataset, and show HCDIR significantly outperforms the state-of-the-art solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源